Advanced Battery Analyzers
How are batteries checked and serviced? This article describes the advancements of the modern battery analyzer and explains how these instruments are used in the industry. While organizations such as public safety have been using battery analyzers for the last two decades to restore and prolong nickel-cadmium batteries, analyzers have made their way also into the cell phone, portable computing, medical and defense markets. The early models were impractical and did not adapt well to changing battery chemistries. In addition, the analyzers provided limited service and did not offer the quick test results and restoration capabilities customers demand today.
The last few years have brought a rebirth of the battery analyzer. With the move from the high-maintenance nickel-based batteries to the maintenance-free lithium-based packs, the duty of a battery analyzer is changing from life-extending cycling to rapid testing and boosting.
Fixed current analyzers
There are two basic types of battery analyzers: the fixed current and programmable versions. Fixed current units are the lower priced of the two, and charge and discharge a battery at a preset current of about 600mA. Smaller batteries get serviced reasonably fast but larger batteries are slow. The service time of an 1800mAh battery is three times that of a 600mAh pack. The capacity readout is in mAh and reflects the length of discharge. The fixed-current analyzers are the predecessors of the programmable units.
Programmable analyzers
The programmable analyzers allow servicing the battery against preset parameters. The charge and discharge currents are adjusted according to the battery rating, and the voltage is set to flag batteries with incorrect voltages. These analyzers provide more accurate readings and enable higher battery throughput than fixed current units. In addition, programmable analyzers are better suited to service new battery systems and have proven to be more effective in restoring weak batteries. The Cadex C7000-Series are such programmable battery analyzers.
Battery adapters
Interfacing the batteries has always been a challenge with battery analyzers. Technicians have invented contraptions with springs and levers so complicated that only they themselves are able to operate. Everybody else stays away from them of fear.
Cadex solved the battery interface issue with the custom adapters for common batteries and the universal adapters for specialty packs. The custom adapters are the easiest to use and provide the most accurate test results. User-programmable cables accommodate larger batteries or assist when no adapter is on hand. Smaller batteries can be serviced with the Cadex FlexArm™. Two contact probes mounted on flexible arms provide the connection when lowered to the battery terminals. Magnetic guides keep the battery in position and a temperature sensor safeguards the battery. Figure 1 illustrates the Cadex FlexArm™.
Figure 1: Cadex FlexArm™.
Snapped into the Cadex 7000-Series battery analyzers, the FlexArm™ establishes contact by lowering the arms to the battery. Magnetic guides keep the battery in position. The FlexArm™ stores up to 10 battery types, each of which can be given a unique name.
The Cadex adapters contain a memory chip that configures the analyzer to the correct setting. Each adapter stores 10 battery configuration codes to service 10 different battery types. The parameters can be edited with a few keystrokes on the analyzer's keypad.
Service programs
Advanced battery analyzers are capable of evaluating battery conditions and implementing corrective service to restore weak performance. The Cadex system, for example, automatically applies a recondition cycle to nickel-based packs if a user-selected target capacity cannot be reached. Other programs include Prime to prepare a new battery for field use, Charge to allow fast-charge and Custom to apply unique cycles composed of charge, discharge, recondition, trickle charge or any combination, including rest periods and repeats.
Many modern analyzers also offer battery rapid test programs. This often requires entering the battery voltage and rating (in mAh). To obtain accurate readings, a battery-specific matrix may also be required. The Cadex QuickTest™ stores the matrix in the battery adapter, together with the configuration code. Installing the adapter sets the analyzer to the correct parameters, transparent to the user.
With the Cadex system, the matrix is commonly included when purchasing the adapter. If missing, scanning several batteries with various state-of-health conditions creates the matrix. The test time is 3 minutes and requires a charge level of 20-90%. If outside this range, the analyzer automatically applies a brief charge or discharge.
Many batteries are discarded, even when restoration is possible. Cell phone dealers have confirmed that 80-90% of returned mobile phone batteries can be repaired with a battery analyzer. However, most dealers are not equipped to handle the influx of warranty batteries and the packs are returned to the manufacturers for replacement or are discarded. Rapid test enables checking the battery while the customer waits. Minor battery problems can be corrected on the spot.
A typical failure of lithium-ion batteries is excessive low discharge. If discharged below 2.5 volts per cell, the internal safety circuit deactivates and the battery no longer accepts charge with a regular charger. An excessive low discharge can occur if the battery is not recharged for some time after a full discharge through extensive use.
The Cadex battery analyzers feature Boost, a program, which reactivates batteries that appear dead. Boost works by applying a gentle current to the battery to re-energize the safety circuit and raise the cell voltage. After reaching the operating voltage, the battery can be charged and tested normally. Boosted batteries perform flawlessly as long as a repeat deep discharge is avoided.
Printing
Most analyzers are capable of printing service reports and battery labels. This feature simplifies maintenance, especially in a fleet environment where the operators must observe periodic service requirements. Printed reports also benefit customer service staff and engineers.
Figure 2: Label printer.
The label printer automatically spits out a label with each battery serviced. The labels contain the service date; service due date, battery capacity and internal battery resistance.
Labeling the batteries with service date and test results is self-governing in the sense that the user only picks a properly labeled battery and has recently been serviced. Batteries with past due service date are segregated for service. With such a system, the user has full confidence that the battery will last through the shift, with energy to spare. Weak batteries are weeded out.
Last Updated: 5-Jul-2016
Batteries In A Portable World
The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.
Find An Article
Table of Contents
-
Introduction 4>
- BU-001: Sharing Battery Knowledge
- BU-002: Introduction
- BU-003: Dedication
-
Crash Course on Batteries 4>
- BU-101: When Was the Battery Invented?
- BU-102: Early Innovators
- BU-103: Global Battery Markets
- BU-103a: Battery Breakthroughs: Myth or Fact?
- BU-104: Getting to Know the Battery
- BU-104a: Comparing the Battery with Other Power Sources
- BU-104b: Battery Building Blocks
- BU-104c: The Octagon Battery – What makes a Battery a Battery
- BU-105: Battery Definitions and what they mean
- BU-106: Advantages of Primary Batteries
- BU-106a: Choices of Primary Batteries
- BU-107: Comparison Table of Secondary Batteries
-
Battery Types 4>
- BU-201: How does the Lead Acid Battery Work?
- BU-201a: Absorbent Glass Mat (AGM)
- BU-201b: Gel Lead Acid Battery
- BU-202: New Lead Acid Systems
- BU-203: Nickel-based Batteries
- BU-204: How do Lithium Batteries Work?
- BU-205: Types of Lithium-ion
- BU-206: Lithium-polymer: Substance or Hype?
- BU-208: Cycling Performance
- BU-209: How does a Supercapacitor Work?
- BU-210: How does the Fuel Cell Work?
- BU-210a: Why does Sodium-sulfur need to be heated
- BU-210b: How does the Flow Battery Work?
- BU-211: Alternate Battery Systems
- BU-212: Future Batteries
- BU-214: Summary Table of Lead-based Batteries
- BU-215: Summary Table of Nickel-based Batteries
- BU-216: Summary Table of Lithium-based Batteries
- BU-217: Summary Table of Alternate Batteries
- BU-218: Summary Table of Future Batteries
-
Packaging and Safety 4>
- BU-301: A look at Old and New Battery Packaging
- BU-301a: Types of Battery Cells
- BU-302: Series and Parallel Battery Configurations
- BU-303: Confusion with Voltages
- BU-304: Why are Protection Circuits Needed?
- BU-304a: Safety Concerns with Li-ion
- BU-304b: Making Lithium-ion Safe
- BU-304c: Battery Safety in Public
- BU-305: Building a Lithium-ion Pack
- BU-306: What is the Function of the Separator?
- BU-307: How does Electrolyte Work?
- BU-308: Availability of Lithium
- BU-309: How does Graphite Work in Li-ion?
- BU-310: How does Cobalt Work in Li-ion?
- BU-311: Battery Raw Materials
-
Charge Methods 4>
- BU-401: How do Battery Chargers Work?
- BU-401a: Fast and Ultra-fast Chargers
- BU-402: What Is C-rate?
- BU-403: Charging Lead Acid
- BU-404: What is Equalizing Charge?
- BU-405: Charging with a Power Supply
- BU-406: Battery as a Buffer
- BU-407: Charging Nickel-cadmium
- BU-408: Charging Nickel-metal-hydride
- BU-409: Charging Lithium-ion
- BU-409a: Why do Old Li-ion Batteries Take Long to Charge?
- BU-409b: Charging Lithium Iron Phosphate
- BU-410: Charging at High and Low Temperatures
- BU-411: Charging from a USB Port
- BU-412: Charging without Wires
- BU-413: Charging with Solar, Turbine
- BU-413a: How to Store Renewable Energy in a Battery
- BU-414: How do Charger Chips Work?
- BU-415: How to Charge and When to Charge?
-
Discharge Methods 4>
- BU-501: Basics about Discharging
- BU-501a: Discharge Characteristics of Li-ion
- BU-502: Discharging at High and Low Temperatures
- BU-503: Determining Power Deliver by the Ragone Plot
- BU-504: How to Verify Sufficient Battery Capacity
-
"Smart" Battery 4>
- BU-601: How does a Smart Battery Work?
- BU-602: How does a Battery Fuel Gauge Work?
- BU-603: How to Calibrate a “Smart” Battery
- BU-603a: Calibrating SMBus Batteries with Impedance Tracking
- BU-604: How to Process Data from a “Smart” Battery
- Testing and Calibrating Smart Batteries
-
From Birth to Retirement 4>
- BU-701: How to Prime Batteries
- BU-702: How to Store Batteries
- BU-703: Health Concerns with Batteries
- BU-704: How to Transport Batteries
- BU-704a: Shipping Lithium-based Batteries by Air
- BU-704b: CAUTION & Overpack Labels
- BU-704c: Class 9 Label
- BU-704d: NFPA 704 Rating
- BU-704e: Battery for Personal and Fleet Use
- BU-705: How to Recycle Batteries
- BU-705a: Battery Recycling as a Business
- BU-706: Summary of Do's and Don'ts
-
How To Prolong Battery Life 4>
-
General 4>
- BU-801: Setting Battery Performance Standards
- BU-801a: How to Rate Battery Runtime
- BU-801b: How to Define Battery Life
- BU-802: What Causes Capacity Loss?
- BU-802a: How does Rising Internal Resistance affect Performance?
- BU-802b: What does Elevated Self-discharge Do?
- BU-802c: How Low can a Battery be Discharged?
- BU-803: Can Batteries Be Restored?
- BU-803a: Cell Matching and Balancing
- BU-803b: What causes Cells to Short?
- BU-803c: Loss of Electrolyte
-
Lead Acid 4>
- BU-804: How to Prolong Lead-acid Batteries
- BU-804a: Corrosion, Shedding and Internal Short
- BU-804b: Sulfation and How to Prevent it
- BU-804c: Acid Stratification and Surface Charge
- BU-805: Additives to Boost Flooded Lead Acid
- BU-806: Tracking Battery Capacity and Resistance as part of Aging
- BU-806a: How Heat and Loading affect Battery Life
-
Nickel-based 4>
- BU-807: How to Restore Nickel-based Batteries
- BU-807a: Effect of Zapping
-
Lithium-ion 4>
- BU-808: How to Prolong Lithium-based Batteries
- BU-808a: How to Awaken a Sleeping Li-ion
- BU-808b: What Causes Li-ion to Die?
- BU-808c: Coulombic and Energy Efficiency with the Battery
- BU-809: How to Maximize Runtime
- BU-810: What Everyone Should Know About Aftermarket Batteries
- BU-811: Assuring Minimum Operational Reserve Energy (MORE)
-
Battery Testing and Monitoring 4>
- BU-901: Fundamentals in Battery Testing
- BU-901b: How to Measure the Remaining Useful Life of a Battery
- BU-902: How to Measure Internal Resistance
- BU-902a: How to Measure CCA
- BU-903: How to Measure State-of-charge
- BU-904: How to Measure Capacity
- BU-905: Testing Lead Acid Batteries
- BU-905a: Testing Starter Batteries in Vehicles
- BU-905b: Knowing when to Replace a Starter Battery
- BU-906: Testing Nickel-based Batteries
- BU-907: Testing Lithium-based Batteries
- BU-907a: Battery Rapid-test Methods
- BU-907b: Advancements in Battery Testing
- BU-907c: Cloud Analytics in Batteries
- BU-908: Battery Management System (BMS)
- BU-909: Battery Test Equipment
- BU-910: How to Repair a Battery Pack
- BU-911: How to Repair a Laptop Battery
- BU-915: Testing Battery with EIS
- BU-916: Deep Battery Diagnostics
- BU-917: In Search for Performance Transparency with Batteries
- BU-918: Battery Endurance Plan
-
Amazing Value of a Battery 4>
- BU-1001: Batteries in Industries
- BU-1002: Electric Powertrain, then and now
- BU-1002a: Hybrid Electric Vehicles and the Battery
- BU-1002b: Environmental Benefit of the Electric Powertrain
- BU-1003: Electric Vehicle (EV)
- BU-1003a: Battery Aging in an Electric Vehicle (EV)
- BU-1004: Charging an Electric Vehicle
- BU-1005: Does the Fuel Cell-powered Vehicle have a Future?
- BU-1006: Cost of Mobile and Renewable Power
- BU-1007: Net Calorific Value
- BU-1008: Working towards Sustainability
- BU-1009: Battery Paradox - Afterword
-
Information 4>
- BU-1101: Glossary
- BU-1102: Abbreviations
- BU-1103: Bibliography
- BU-1104: About the Author
- BU-1105: About Cadex (Sponsor)
- BU-1106: Author's Creed
- BU-1107: Disclaimer
- BU-1108: Copyright
-
Learning Tools 4>
- BU-1501 Battery History
- BU-1502 Basics about Batteries
- BU-1503 How to Maintain Batteries
- BU-1504 Battery Test & Analyzing Devices
- BU-1505 Short History of Cadex
-
Battery Articles 4>
- Perception of a Battery Tester
- Green Deal
- Risk Management in Batteries
- Predictive Test Methods for Starter Batteries
- Why Mobile Phone Batteries do not last as long as an EV Battery
- Battery Rapid-test Methods
- How to Charge Li-ion with a Parasitic Load
- Ultra-fast Charging
- Assuring Safety of Lithium-ion in the Workforce
- Diagnostic Battery Management
- Tweaking the Mobile Phone Battery
- Battery Test Methods
- Battery Testing and Safety
- How to Make Battery Performance Transparent
- Battery Diagnostics On-the-fly
- Making Battery State-of-health Transparent
- Batteries will eventually die, but when and how?
- Why does Pokémon Go rob so much Battery Power?
- How to Care for the Battery
- Tesla’s iPhone Moment — How the Powerwall will Change Global Energy Use
- Painting the Battery Green by giving it a Second Life
- Charging without Wires — A Solution or Laziness
- What everyone should know about Battery Chargers
- A Look at Cell Formats and how to Build a good Battery
- Battery Breakthroughs — Myth or Fact?
- Rapid-test Methods that No Longer Work
- Shipping Lithium-based Batteries by Air
- How to make Batteries more Reliable and Longer Lasting
- What causes Lithium-ion to die?
- Safety of Lithium-ion Batteries
- Recognizing Battery Capacity as the Missing Link
- Managing Batteries for Warehouse Logistics
- Caring for your Starter Battery
- Giving Batteries a Second Life
- How to Make Batteries in Medical Devices More Reliable
- Possible Solutions for the Battery Problem on the Boeing 787
- Impedance Spectroscopy Checks Battery Capacity in 15 Seconds
- How to Improve the Battery Fuel Gauge
- Examining Loading Characteristics on Primary and Secondary Batteries
-
Language Pool 4>
- BU-001: Compartir conocimiento sobre baterías
- BU-002: Introducción
- BU-003: Dedicatoria
- BU-104: Conociendo la Batería
- BU-302: Configuraciones de Baterías en Serie y Paralelo
-
Batteries in a Portable World book 4>
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 1 - 3
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 4 - 10