Non-correctable Battery Problems
NOTE: This article has been archived. Please read our new "Can Batteries be Restored?" for an updated version.
Some rechargeable batteries can be restored through external means, such as applying a full discharge. There are, however, many defects that cannot be corrected. These include high internal resistance, elevated self-discharge, electrical short, dry-out, plate corrosion and general chemical breakdown.
The performance loss of a battery occurs naturally as part of usage and aging; some is hastened by lack of maintenance, harsh field conditions and poor charging practices. This paper examines the cause of non-correctable battery problems and explores ways to minimize these breakdowns.
High Self-discharge
All batteries are affected by self-discharge. This is not a defect per se, although improper use enhances the condition. Self-discharge is asymptotical; the highest loss occurs right after charge, and then tapers off.
Nickel-based batteries exhibit a relatively high self-discharge. At ambient temperature, a new nickel-cadmium loses about 10% of its capacity in the first 24 hours after charge. The self-discharge settles to about 10% per month afterwards. Higher temperature increases the self-discharge substantially. As a general guideline, the rate of self-discharge doubles with every 10°C (18°F) increase in temperature. The self-discharge of nickel-metal-hydride is about 30% higher than that of nickel-cadmium.
The self-discharge increases after a nickel-based battery has been cycled for a few hundred times. The battery plates begin to swell and press more firmly against the separator. Metallic dendrites, which are the result of crystalline formation (memory), also increase the self-discharge by marring the separator. Discard a nickel-based battery if the self-discharge reaches 30% in 24 hours
The self-discharge of the lithium-ion battery is 5% in the first 24 hours after charge, and then reduces to 1% to 2% per month thereafter. The safety circuit adds about 3%. High cycle count and aging have little effect on the self-discharge of lithium-based batteries. A lead-acid battery self-discharges at only 5% per month or 50% per year. Repeated deep cycling increases self-discharge.
The percentage of self-discharge can be measured with a battery analyzer but the procedure takes several hours. Elevated internal battery resistance often reflects in higher internal battery resistance, a parameter that can be measured with an impedance meter or the OhmTest program of the Cadex battery analyzers.
Cell matching
Even with modern manufacturing techniques, the cell capacities cannot be accurately predicted, especially with nickel-based cells. As part of manufacturing, each cell is measured and segregated into categories according to their inherent capacity levels. The high capacity 'A' cells are commonly sold for special applications at premium prices; the mid-range 'B' cells are used for commercial and industrial applications; and the low-end 'C' cells are sold at bargain prices. Cycling will not significantly improve the capacity of the low-end cells. When purchasing rechargeable batteries at a reduced price, the buyer should be prepared to accept lower capacity levels.
The cells in a pack should be matched within +/- 2.5%. Tighter tolerances are required on batteries with high cell count, those delivering high load currents and packs operating at cold temperatures. If only slightly off, the cells in a new pack will adapt to each other after a few charge/discharge cycles. There is a correlation between well-balanced cells and battery longevity.
Why is cell matching so important? A weak cell holds less capacity and is discharged more quickly than the strong one. This imbalance may cause cell reversal on the weak cell if discharged too low. On charge, the weak cell is ready first and goes into heat-generating overcharge while the stronger cell still accepts charge and remains cool. In both cases, the weak cell is at a disadvantage, making it even weaker and contributing to a more acute cell mismatch.
Quality cells are more consistent in capacity and age more evenly than the lower quality counterparts. Manufacturers of high-end power tools choose high quality cells because of durability under heavy load and temperature extremes. The extra cost pays back on longer lasting packs.
lithium-based cells are by nature closely matched when they come off the manufacturing line. Tight tolerances are important because all cells in a pack must reach the full-charge and end-of-discharge voltage thresholds at a unified time. A built-in protection circuit safeguards against cells that do not follow a normal voltage pattern.
Shorted Cells
Manufacturers are often unable to explain why some cells develop high electrical leakage or an electrical short while still relatively new. The suspected culprit is foreign particles that contaminate the cells during manufacturing. Another possible cause is rough spots on the plates that damage the separator. Better manufacturing processes have reduced the 'infant mortality' rate significantly.
Cell reversal caused by deep discharging also contributes to shorted cells. This may occur if a nickel-based battery is being fully depleted under a heavy load. nickel-cadmium is designed with some reverse voltage protection. A high reverse current, however, will produce a permanent electrical short. Another contributor is marring of the separator through uncontrolled crystalline formation, also known as memory.
Applying momentary high-current bursts in an attempt to repair shorted cells offers limited success. The short may temporarily evaporate but the damage to the separator material remains. The repaired cell often exhibits a high self-discharge and the short frequently returns. Replacing a shorted cell in an aging pack is not recommended unless the new cell is matched with the others in terms of voltage and capacity.
Loss of Electrolyte
Although sealed, the cells may lose some electrolyte during their life, especially if venting occurs due to excessive pressure during careless charging. Once venting has occurred, the spring-loaded vent seal on nickel-based cells may never properly close again, resulting in a build-up of white powder around the seal opening. The loss of electrolyte will eventually lower the battery capacity.
Permeation, or loss of electrolyte in valve regulated lead-acid batteries (VRLA) is a recurring problem. Overcharging and operating at high temperatures are the causes. Replenishing lost liquid by adding water offers limited success. Although some capacity may be regained, the performance becomes unreliable.
If correctly charged, lithium-ion cell should never generate gases and cause venting. But in spite of what is said, the lithium-based cells can build up internal pressure under certain conditions. Some cells include an electrical switch that disconnects the current flow if the cell pressure reaches a critical level. Other cells rupture a membrane to release the gases in a controlled way. lithium-ion-polymer in a pouch cell sometime grows to the shape of a small balloon because these cells do not include venting. Ballooning cell are known to damage the housing of the portable device.
Figure 1: Lithium-ion-polymer cell in a pouch pack. Made ultra-slim, some cells generate hydrogen gas during charge and puff up. The force can damage the housing of the portable device.
Last Updated: 5-Jul-2016
Batteries In A Portable World
The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.
Find An Article
Table of Contents
-
Introduction 4>
- BU-001: Sharing Battery Knowledge
- BU-002: Introduction
- BU-003: Dedication
-
Crash Course on Batteries 4>
- BU-101: When Was the Battery Invented?
- BU-102: Early Innovators
- BU-103: Global Battery Markets
- BU-103a: Battery Breakthroughs: Myth or Fact?
- BU-104: Getting to Know the Battery
- BU-104a: Comparing the Battery with Other Power Sources
- BU-104b: Battery Building Blocks
- BU-104c: The Octagon Battery – What makes a Battery a Battery
- BU-105: Battery Definitions and what they mean
- BU-106: Advantages of Primary Batteries
- BU-106a: Choices of Primary Batteries
- BU-107: Comparison Table of Secondary Batteries
-
Battery Types 4>
- BU-201: How does the Lead Acid Battery Work?
- BU-201a: Absorbent Glass Mat (AGM)
- BU-201b: Gel Lead Acid Battery
- BU-202: New Lead Acid Systems
- BU-203: Nickel-based Batteries
- BU-204: How do Lithium Batteries Work?
- BU-205: Types of Lithium-ion
- BU-206: Lithium-polymer: Substance or Hype?
- BU-208: Cycling Performance
- BU-209: How does a Supercapacitor Work?
- BU-210: How does the Fuel Cell Work?
- BU-210a: Why does Sodium-sulfur need to be heated
- BU-210b: How does the Flow Battery Work?
- BU-211: Alternate Battery Systems
- BU-212: Future Batteries
- BU-214: Summary Table of Lead-based Batteries
- BU-215: Summary Table of Nickel-based Batteries
- BU-216: Summary Table of Lithium-based Batteries
- BU-217: Summary Table of Alternate Batteries
- BU-218: Summary Table of Future Batteries
-
Packaging and Safety 4>
- BU-301: A look at Old and New Battery Packaging
- BU-301a: Types of Battery Cells
- BU-302: Series and Parallel Battery Configurations
- BU-303: Confusion with Voltages
- BU-304: Why are Protection Circuits Needed?
- BU-304a: Safety Concerns with Li-ion
- BU-304b: Making Lithium-ion Safe
- BU-304c: Battery Safety in Public
- BU-305: Building a Lithium-ion Pack
- BU-306: What is the Function of the Separator?
- BU-307: How does Electrolyte Work?
- BU-308: Availability of Lithium
- BU-309: How does Graphite Work in Li-ion?
- BU-310: How does Cobalt Work in Li-ion?
- BU-311: Battery Raw Materials
-
Charge Methods 4>
- BU-401: How do Battery Chargers Work?
- BU-401a: Fast and Ultra-fast Chargers
- BU-402: What Is C-rate?
- BU-403: Charging Lead Acid
- BU-404: What is Equalizing Charge?
- BU-405: Charging with a Power Supply
- BU-406: Battery as a Buffer
- BU-407: Charging Nickel-cadmium
- BU-408: Charging Nickel-metal-hydride
- BU-409: Charging Lithium-ion
- BU-409a: Why do Old Li-ion Batteries Take Long to Charge?
- BU-409b: Charging Lithium Iron Phosphate
- BU-410: Charging at High and Low Temperatures
- BU-411: Charging from a USB Port
- BU-412: Charging without Wires
- BU-413: Charging with Solar, Turbine
- BU-413a: How to Store Renewable Energy in a Battery
- BU-414: How do Charger Chips Work?
- BU-415: How to Charge and When to Charge?
-
Discharge Methods 4>
- BU-501: Basics about Discharging
- BU-501a: Discharge Characteristics of Li-ion
- BU-502: Discharging at High and Low Temperatures
- BU-503: Determining Power Deliver by the Ragone Plot
- BU-504: How to Verify Sufficient Battery Capacity
-
"Smart" Battery 4>
- BU-601: How does a Smart Battery Work?
- BU-602: How does a Battery Fuel Gauge Work?
- BU-603: How to Calibrate a “Smart” Battery
- BU-603a: Calibrating SMBus Batteries with Impedance Tracking
- BU-604: How to Process Data from a “Smart” Battery
- Testing and Calibrating Smart Batteries
-
From Birth to Retirement 4>
- BU-701: How to Prime Batteries
- BU-702: How to Store Batteries
- BU-703: Health Concerns with Batteries
- BU-704: How to Transport Batteries
- BU-704a: Shipping Lithium-based Batteries by Air
- BU-704b: CAUTION & Overpack Labels
- BU-704c: Class 9 Label
- BU-704d: NFPA 704 Rating
- BU-704e: Battery for Personal and Fleet Use
- BU-705: How to Recycle Batteries
- BU-705a: Battery Recycling as a Business
- BU-706: Summary of Do's and Don'ts
-
How To Prolong Battery Life 4>
-
General 4>
- BU-801: Setting Battery Performance Standards
- BU-801a: How to Rate Battery Runtime
- BU-801b: How to Define Battery Life
- BU-802: What Causes Capacity Loss?
- BU-802a: How does Rising Internal Resistance affect Performance?
- BU-802b: What does Elevated Self-discharge Do?
- BU-802c: How Low can a Battery be Discharged?
- BU-803: Can Batteries Be Restored?
- BU-803a: Cell Matching and Balancing
- BU-803b: What causes Cells to Short?
- BU-803c: Loss of Electrolyte
-
Lead Acid 4>
- BU-804: How to Prolong Lead-acid Batteries
- BU-804a: Corrosion, Shedding and Internal Short
- BU-804b: Sulfation and How to Prevent it
- BU-804c: Acid Stratification and Surface Charge
- BU-805: Additives to Boost Flooded Lead Acid
- BU-806: Tracking Battery Capacity and Resistance as part of Aging
- BU-806a: How Heat and Loading affect Battery Life
-
Nickel-based 4>
- BU-807: How to Restore Nickel-based Batteries
- BU-807a: Effect of Zapping
-
Lithium-ion 4>
- BU-808: How to Prolong Lithium-based Batteries
- BU-808a: How to Awaken a Sleeping Li-ion
- BU-808b: What Causes Li-ion to Die?
- BU-808c: Coulombic and Energy Efficiency with the Battery
- BU-809: How to Maximize Runtime
- BU-810: What Everyone Should Know About Aftermarket Batteries
- BU-811: Assuring Minimum Operational Reserve Energy (MORE)
-
Battery Testing and Monitoring 4>
- BU-901: Fundamentals in Battery Testing
- BU-901b: How to Measure the Remaining Useful Life of a Battery
- BU-902: How to Measure Internal Resistance
- BU-902a: How to Measure CCA
- BU-903: How to Measure State-of-charge
- BU-904: How to Measure Capacity
- BU-905: Testing Lead Acid Batteries
- BU-905a: Testing Starter Batteries in Vehicles
- BU-905b: Knowing when to Replace a Starter Battery
- BU-906: Testing Nickel-based Batteries
- BU-907: Testing Lithium-based Batteries
- BU-907a: Battery Rapid-test Methods
- BU-907b: Advancements in Battery Testing
- BU-907c: Cloud Analytics in Batteries
- BU-908: Battery Management System (BMS)
- BU-909: Battery Test Equipment
- BU-910: How to Repair a Battery Pack
- BU-911: How to Repair a Laptop Battery
- BU-915: Testing Battery with EIS
- BU-916: Deep Battery Diagnostics
- BU-917: In Search for Performance Transparency with Batteries
- BU-918: Battery Endurance Plan
- BU-919: Building a Matrix to test Batteries
- BU-920: Matrix Library
- BU-921: Testing Batteries by Multi-Model EIS
-
Amazing Value of a Battery 4>
- BU-1001: Batteries in Industries
- BU-1002: Electric Powertrain, then and now
- BU-1002a: Hybrid Electric Vehicles and the Battery
- BU-1002b: Environmental Benefit of the Electric Powertrain
- BU-1003: Electric Vehicle (EV)
- BU-1003a: Battery Aging in an Electric Vehicle (EV)
- BU-1004: Charging an Electric Vehicle
- BU-1005: Does the Fuel Cell-powered Vehicle have a Future?
- BU-1006: Cost of Mobile and Renewable Power
- BU-1007: Net Calorific Value
- BU-1008: Working towards Sustainability
- BU-1009: Battery Paradox - Afterword
-
Information 4>
- BU-1101: Glossary
- BU-1102: Abbreviations
- BU-1103: Bibliography
- BU-1104: About the Author
- BU-1105: About Cadex (Sponsor)
- BU-1106: Author's Creed
- BU-1107: Disclaimer
- BU-1108: Copyright
-
Learning Tools 4>
- BU-1501 Battery History
- BU-1502 Basics about Batteries
- BU-1503 How to Maintain Batteries
- BU-1504 Battery Test & Analyzing Devices
- BU-1505 Short History of Cadex
-
Battery Articles 4>
- Perception of a Battery Tester
- Green Deal
- Risk Management in Batteries
- Predictive Test Methods for Starter Batteries
- Why Mobile Phone Batteries do not last as long as an EV Battery
- Battery Rapid-test Methods
- How to Charge Li-ion with a Parasitic Load
- Ultra-fast Charging
- Assuring Safety of Lithium-ion in the Workforce
- Diagnostic Battery Management
- Tweaking the Mobile Phone Battery
- Battery Test Methods
- Battery Testing and Safety
- How to Make Battery Performance Transparent
- Battery Diagnostics On-the-fly
- Making Battery State-of-health Transparent
- Batteries will eventually die, but when and how?
- Why does Pokémon Go rob so much Battery Power?
- How to Care for the Battery
- Tesla’s iPhone Moment — How the Powerwall will Change Global Energy Use
- Painting the Battery Green by giving it a Second Life
- Charging without Wires — A Solution or Laziness
- What everyone should know about Battery Chargers
- A Look at Cell Formats and how to Build a good Battery
- Battery Breakthroughs — Myth or Fact?
- Rapid-test Methods that No Longer Work
- Shipping Lithium-based Batteries by Air
- How to make Batteries more Reliable and Longer Lasting
- What causes Lithium-ion to die?
- Safety of Lithium-ion Batteries
- Recognizing Battery Capacity as the Missing Link
- Managing Batteries for Warehouse Logistics
- Caring for your Starter Battery
- Giving Batteries a Second Life
- How to Make Batteries in Medical Devices More Reliable
- Possible Solutions for the Battery Problem on the Boeing 787
- Impedance Spectroscopy Checks Battery Capacity in 15 Seconds
- How to Improve the Battery Fuel Gauge
- Examining Loading Characteristics on Primary and Secondary Batteries
-
Language Pool 4>
- BU-001: Compartir conocimiento sobre baterías
- BU-002: Introducción
- BU-003: Dedicatoria
- BU-104: Conociendo la Batería
- BU-302: Configuraciones de Baterías en Serie y Paralelo
-
Batteries in a Portable World book 4>
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 1 - 3
- Change-log of “Batteries in a Portable World,” 4th edition: Chapters 4 - 10