Battery Rapid-test Methods

How to Measure State-of-health without Digital Error

A battery resembles a living organism that cannot be measured; only estimated by diagnostics similar to a doctor examining a patient. The accuracy of rapid-testing varies according to symptoms. These indicators change with state-of-charge (SoC), agitation after charge and discharge, temperature and length of storage. A rapid-test must have the ability to distinguish between a good battery that is partially charged and a weak pack that is fully charged. Both variants deliver similar runtimes in the hands of the user but have different performance levels.

A widely used performance analysis is coulomb counting in which in-and-out-flowing energies are measured. Coulomb counting goes back 250 years when Charles-Augustin de Coulomb first established the “Coulomb Rule.” Elegant in concept, but coulomb counting has its own problem in that it loses accuracy when the battery is randomly charged and discharged. State-of-health (SoH) estimation by a digital solution is incomplete without also including the chemical battery.

The leading health indicator of a battery is capacity. Capacity represents energy storage, a quality that gradually and permanently fades with use. Other characteristics responsible for SoH are internal resistance that governs load current and self-discharge that examines mechanical integrity. All three characteristics must be met to give a battery a clean bill of health.

Estimating the capacity of the chemical battery on the fly is most complex. This involves algorithms and matrices that serve as lookup tables similar to letter or face recognition. Modern rapid-test methods move towards advanced machine learning in capturing the many moods of a battery.

Here is a summary of simple to complex test methods to examine batteries.

Voltage Reveals SoC. Capacity estimation is not possible.
Ohmic test Measures internal battery resistance to verify loading characteristics and to identify fault conditions. Resistance readings do not correlate with capacity. The ohmic test is also known as an impedance test (Z).
Full cycle Reads the capacity of the chemical battery with a charge/discharge/charge cycle. The results are accurate but a battery must often be removed from service and the testing times take hours.
Rapid-test Most rapid-test methods are based on time domain or frequency domain. Time domain excites the battery with pulses to observe ion-flow of Li-ion batteries. Frequency domain scans the battery with multiple frequencies to generate a Nyquist plot for analysis. Both methods require complex algorithms with parameters or matrices that serve as lookup tables.
BMS Battery Management Systems estimate SoC by monitoring voltage, current and temperature. Some BMS for Li-ion also counts coulombs. A BMS can identify a battery defect but is unable to estimate capacity accurately.
Coulomb counting Reads in-and out flowing current. The smart battery stores the data in the Full Charge Capacity (FCC) register that can be accessed but the readings can be inaccurate if the battery is not calibrated. A full cycle corrects the tracking error.
Battery parser A new method to estimate capacity during charge. A proprietary filtering algorithm establishes the precise SoC; coulomb counting estimates battery capacity.

Rapid-test Methods

No single test can capture all health indicators of a battery. Many rapid-test devices look only at voltage and internal resistance. While capacity loss of a fading NiCd or NiMH may correlate with rising internal resistance, this relationship is less evident with lithium- and lead-based batteries. Advertising capacity estimation with a tester that only measures voltage and internal resistance can be misleading. It confuses the industry into believing that complex results are attainable with simplistic methods. Resistance-based instruments will indeed identify a dying or dead battery; but so does the user.

A battery is a reactive device and the method by which resistance measurements are taken matters. A DC measurement looks at pure resistive values while AC includes reactive components that provide additional information. Figure 1 represents the impedance of a good and faded Li-ion battery when scanned with AC from 0.1Hz to 1kHz. The strongest variances in impedance (-Imp -Z) are observed on the low frequency scale ranging between 1Hz and 10Hz.

QSMS Impedance
Figure 1: Frequency scans of a good and weak mobile phone battery.
Impedance variances are most visible below 10Hz. The horizontal scale is logarithmic to condense the frequency range.
Source: Cadex Electronics

It should be noted that resistive readings alone are inconclusive. No size fits all and the signatures vary with battery size and type. The results are further skewed by SoC levels, agitation and temperature. Cadex laboratories further discovered differences in how batteries are aged. What is most puzzling is why natural aging produces dissimilar signatures than artificial aging done in environmental chambers with fixed test regimes. This human-like behavior shares similarities with longevities people experience living in different global regions. 

Cadex is pioneering in several rapid-test methods. These are Quick-sort Model Specific, Electrochemical Dynamic Response and Electrochemical Impedance Spectroscopy (EIS).


Quick-sort Model Specific (QSMS)

QSMS observes difference in resistive values when assessing a battery with DC and AC methods. For example, the resistance of Li-ion in an 18650 cell is about 110mOhm with DC measurement and roughly 36mOhm with a 1,000Hz AC signal. The variance between the two readings provides performance information when compared with battery-specific parameters that are stored in a lookup table.

The algorithm is relatively simple and the test time is short, but the logistics of creating the parameters derived from good, marginal and poor batteries adds to complexity. QSMS is one of several rapid-test methods that Cadex has developed to classify mobile phone batteries on the fly.

Electrochemical Dynamic Response (EDR)

EDR measures the mobility of ion-flow between electrodes by applying load pulses and evaluating the response time on attack and recovery. The recovery times are compared with stored parameters relating to battery performance. Figure 2 demonstrates a good battery that is firm and has a quick recovery against a weak battery that shows softness and has a sluggish recovery.

Figure 2: Electrochemical dynamic response.
EDR measures the ion flow between the positive and negative plates. A strong battery recovers quickly from an attack whereas a weaker pack is more sluggish. 
U.S. Patent 7,622,929. Source: Cadex Electronics

The diffusion coefficient of Li-ion differs according to active material and electrolyte additives used. EDR was developed by Cadex to rapid-test a broad range of mobile phone batteries. The technology is now being developed to test larger batteries.

Electrochemical Impedance Spectroscopy (EIS)

EIS moves rapid-testing to a higher complexity level by scanning a battery with multiple frequencies to generate a Nyquist plot. The Nyquist information is then superimposed onto electrochemical models that enable the estimation of capacity, CCA and SoC non-invasively. The typical test time is 15 seconds.

The Nyquist plot is named after Harry Nyquist (1889–1976), a former engineer at Bell Laboratories. It presents the frequency response of a linear system by displaying both amplitude and phase angle on a single plot using frequency as parameter. The horizontal x axis reveals the real Ohm impedance while the vertical y axis represents the imaginary impedance. Scientists predict that battery diagnostics is gravitating toward EIS technology by combining test results with complex modeling.

Figure 3 illustrates the three domains of the Nyquist plot entitled migration on the high frequency end, charge transfer in mid-range, and diffusion on the low frequency scale.

Figure 3: The Nyquist plot is divided into high, mid and low frequency sections.
The mid-frequency semi-circle represents battery characteristics best. Larger batteries require lower frequencies.
Source: Cadex

When scanning a battery from kilohertz to millihertz, the Migration field reveals resistive qualities of a battery that represents a bird’s-eye view of the landscape. Valuable characteristics are found in the mid frequency range called Charge Transfer. This all-important domain forms a semi-circle representing the kinetics of the battery that provide SoH references. The low range dubbed Diffusion includes additional information relating to capacity but this requires long test times. Battery size directs the frequency; the larger the battery in ampere-hours, the lower the applied frequency becomes.

A rapid-test should last from a few seconds to no more than 5 minutes, but applying ultra-low frequencies prolongs time. For example, at one millihertz (mHz), one cycle takes 1,000 seconds, or 16 minutes, and several data points are required to complete the analysis. Test durations can often be shortened with clever software simulation.

Nyquist analysis is well suited to test lithium- and lead-based batteries. The multi-model electrochemical impedance spectroscopy, or Spectro™ by Cadex, is the first EIS-based application that estimates battery capacity. Capacity is the leading health indicator; CCA of a starter battery refers to the internal battery resistance that is responsible for engine cranking. In a well-maintained battery, CCA stays high while the capacity gradually decreases with use. A ‘no-start’ occurs when the capacity drops below a required capacity level to crank the engine. To eliminate surprises, a starter battery should be replaced when the capacity drops to 40 percent. The benefit of capacity estimation also becomes clear in this application.

Battery Parser

The term “parser” has been in use in computer technology to describe receiving and sorting instructional data. Cadex uses this term to define battery capacity by establishing the precise SoC with a proprietary algorithm (patent pending) and then counting the coulombs that “fill” the available space of the battery. The charge period must be long enough to attain good readings. Lab results at Cadex show higher capacity accuracies with the battery parser than what is typical with uncalibrated coulomb counting of a smart battery.

The battery parser uses advanced machine learning, algorithms that will make its way into modern battery chargers to provide quality control in batteries. This integration will promote the charger into a supervisory system with no added logistics and little extra cost. Diagnostic battery chargers make battery performance transparent by removing the “black box” syndrome, a problem that has haunted battery users for centuries.


No rapid-test can evaluate all battery symptoms. There will always be outliers to defy the test protocols. Correct predictions for batteries in service should be 9 out of 10. Outliers may include batteries that are new and have not been fully formatted, or packs that have been in storage. Low SoC also causes errors.

Capacity is the gate keeper of battery health that relates to runtime and predicts end-of-life. The term capacity is poorly understood. A battery is typically replaced when the capacity fades to 80 percent. When choosing the end-of-life thresholds, an organization should ensure that the lowest performing battery can perform the assigned duty. Revealing capacity estimation by rapid-testing or in a charger will change the way batteries are maintained. These advances will ultimately usher in an industrial revolution in batteries.

About the Author

Isidor Buchmann is the founder and CEO of Cadex Electronics Inc. For three decades, Buchmann has studied the behavior of rechargeable batteries in practical, everyday applications, has written award-winning articles including the best-selling book “Batteries in a Portable World,” now in its fourth edition. Cadex specializes in the design and manufacturing of battery chargers, analyzers and monitoring devices. For more information on batteries, visit; product information is on

Last updated 2017-10-12

*** Please Read Regarding Comments ***

Comments are intended for "commenting," an open discussion amongst site visitors. Battery University monitors the comments and understands the importance of expressing perspectives and opinions in a shared forum. However, all communication must be done with the use of appropriate language and the avoidance of spam and discrimination.

If you have a suggestion or would like to report an error, please use the "contact us" form or email us at:  We like to hear from you but we cannot answer all inquiries. We recommend posting your question in the comment sections for the Battery University Group (BUG) to share.

Or Jump To A Different Article

Basics You Should Know
The Battery and You
Batteries as Power Source

Comments (2)

On February 22, 2018 at 7:07pm
Deepak Chand wrote:

Approved test method for Specific Gravity and strength of battery acid.

On March 19, 2019 at 2:55pm
Andy wrote:

I’m not clear as to how AC impedance can be greater than DC resistance:

QSMS observes difference in resistive values when assessing a battery with DC and AC methods. For example, the resistance of Li-ion in an 18650 cell is about 110mOhm with DC measurement and roughly 36mOhm with a 1,000Hz AC signal.